Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.140
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672511

RESUMEN

TG2 is a unique member of the transglutaminase family as it undergoes a dramatic conformational change, allowing its mutually exclusive function as either a cross-linking enzyme or a G-protein. The enzyme's dysregulated activity has been implicated in a variety of pathologies (e.g., celiac disease, fibrosis, cancer), leading to the development of a wide range of inhibitors. Our group has primarily focused on the development of peptidomimetic targeted covalent inhibitors, the nature and size of which were thought to be important features to abolish TG2's conformational dynamism and ultimately inhibit both its activities. However, we recently demonstrated that the enzyme was unable to bind guanosine triphosphate (GTP) when catalytically inactivated by small molecule inhibitors. In this study, we designed a library of models targeting covalent inhibitors of progressively smaller sizes (15 to 4 atoms in length). We evaluated their ability to inactivate TG2 by measuring their respective kinetic parameters kinact and KI. Their impact on the enzyme's ability to bind GTP was then evaluated and subsequently correlated to the conformational state of the enzyme, as determined via native PAGE and capillary electrophoresis. All irreversible inhibitors evaluated herein locked TG2 in its open conformation and precluded GTP binding. Therefore, we conclude that steric bulk and structural complexity are not necessary factors to consider when designing TG2 inhibitors to abolish G-protein activity.


Asunto(s)
Alquilantes , Dominio Catalítico , Proteínas de Unión al GTP , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Transglutaminasas/química , Transglutaminasas/metabolismo , Transglutaminasas/antagonistas & inhibidores , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Alquilantes/química , Alquilantes/farmacología , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Conformación Proteica , Cinética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
2.
Elife ; 132024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666771

RESUMEN

Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.


Asunto(s)
Microscopía por Crioelectrón , Guanosina Trifosfato , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/química , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación Proteica , Regulación Alostérica , Modelos Moleculares , Multimerización de Proteína , Humanos
3.
J Mol Graph Model ; 129: 108748, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38452417

RESUMEN

The sterile alpha motif and histidine-aspartate domain-containing protein 1 (or SAMHD1), a human dNTP-triphosphohydrolase, contributes to HIV-1 restriction in select terminally differentiated cells of the immune system. While the prevailing hypothesis is that the catalytically active form of the protein is an allosterically triggered tetramer, whose HIV-1 restriction properties are attributed to its dNTP - triphosphohydrolase activity, it is also known to bind to ssRNA and ssDNA oligomers. A complete picture of the structure-function relationship of the enzyme is still elusive and the function corresponding to its nucleic acid binding ability is debated. In this in silico study, we investigate the stability, preference and allosteric effects of DNA oligomers bound to SAMHD1. In particular, we compare the binding of DNA and RNA oligomers of the same sequence and also consider the binding of DNA fragments with phosphorothioate bonds in the backbone. The results are compared with the canonical form with the monomers connected by GTP/dATP crossbridges. The simulations indicate that SAMHD1 dimers preferably bind to DNA and RNA oligomers compared to GTP/dATP. However, allosteric communication channels are altered in the nucleic acid acid bound complexes compared to the canonical form. All results are consistent with the hypothesis that the DNA bound form of the protein correspond to an unproductive off-pathway state where the protein is sequestered and not available for dNTP hydrolysis.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas de Unión al GTP Monoméricas , Humanos , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Nucleótidos/metabolismo , ADN , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Comunicación , ARN
4.
Protein Sci ; 33(4): e4939, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501467

RESUMEN

Rho-GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer-associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all-atom molecular dynamics simulations on wild-type (wt) and oncogenic isoforms of this protein in GDP- and GTP-bound states. Our results unprecedentedly elucidate that P29Q/S-induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer-associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.


Asunto(s)
Neoplasias , Proteínas de Unión al GTP rho , Humanos , Proteínas de Unión al GTP rho/química , Mutación , Neoplasias/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Isoformas de Proteínas/metabolismo
5.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 3): 53-58, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376823

RESUMEN

The GTPase FlhF, a signal recognition particle (SRP)-type enzyme, is pivotal for spatial-numerical control and bacterial flagella assembly across diverse species, including pathogens. This study presents the X-ray structure of FlhF in its GDP-bound state at a resolution of 2.28 Å. The structure exhibits the classical N- and G-domain fold, consistent with related SRP GTPases such as Ffh and FtsY. Comparative analysis with GTP-loaded FlhF elucidates the conformational changes associated with GTP hydrolysis. These topological reconfigurations are similarly evident in Ffh and FtsY, and play a pivotal role in regulating the functions of these hydrolases.


Asunto(s)
GTP Fosfohidrolasas , Partícula de Reconocimiento de Señal , GTP Fosfohidrolasas/química , Partícula de Reconocimiento de Señal/química , Proteínas Bacterianas/química , Cristalografía por Rayos X , Guanosina Trifosfato/química
6.
Science ; 383(6686): eabm9903, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422126

RESUMEN

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.


Asunto(s)
Bacterias , Infecciones Bacterianas , Membrana Celular , Proteínas de Unión al GTP , Reconocimiento de Inmunidad Innata , Humanos , Citocinas/química , Tomografía con Microscopio Electrónico , Proteínas de Unión al GTP/química , Guanosina Trifosfato/química , Hidrólisis , Inmunidad Celular , Microscopía por Crioelectrón , Gasderminas/química , Proteínas de Unión a Fosfato/química , Conformación Proteica , Membrana Celular/química , Membrana Celular/inmunología , Caspasas Iniciadoras/química , Infecciones Bacterianas/inmunología , Bacterias/inmunología
7.
Molecules ; 29(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338389

RESUMEN

The HRAS protein is considered a critical target for drug development in cancers. It is vital for effective drug development to understand the effects of mutations on the binding of GTP and GDP to HRAS. We conducted Gaussian accelerated molecular dynamics (GaMD) simulations and free energy landscape (FEL) calculations to investigate the impacts of two mutations (A59E and K117R) on GTP and GDP binding and the conformational states of the switch domain. Our findings demonstrate that these mutations not only modify the flexibility of the switch domains, but also affect the correlated motions of these domains. Furthermore, the mutations significantly disrupt the dynamic behavior of the switch domains, leading to a conformational change in HRAS. Additionally, these mutations significantly impact the switch domain's interactions, including their hydrogen bonding with ligands and electrostatic interactions with magnesium ions. Since the switch domains are crucial for the binding of HRAS to effectors, any alterations in their interactions or conformational states will undoubtedly disrupt the activity of HRAS. This research provides valuable information for the design of drugs targeting HRAS.


Asunto(s)
Simulación de Dinámica Molecular , Transducción de Señal , Mutación , Conformación Molecular , Guanosina Trifosfato/química , Conformación Proteica
8.
J Phys Chem B ; 128(7): 1618-1626, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38351706

RESUMEN

RAS is a small GTPase and acts as a binary molecular switch; the transition from its active to inactive state plays a crucial role in various cell signaling processes. Molecular dynamics simulations at the atomistic level suggest that the absence of cofactor Mg2+ ion generally leads to pronounced structural changes in the Switch-I than Switch-II regions and assists GTP binding. The presence of the Mg2+ ion also restricts the rotation of ϒ phosphate and enhances the hydrolysis rate of GTP. Further, the simulations reveal that the stability of the protein is almost uncompromised when Mg2+ is replaced with Zn2+ and not the Ca2+ ion. The specificity of H-RAS to GTP was evaluated by substituting with ATP and CTP, which indicates that the binding pocket tolerates purine bases over pyrimidine bases. However, the D119 residue specifically interacts with the guanine base and serves as one of the primary interactions that leads to the selectivity of GTP over ATP. The ring displacement of 32Y serves as gate dynamics in H-RAS which are important for its interaction with GAP for the nucleotide exchange and is restricted in the presence of ATP. Finally, the point mutations 61, 16, and 32 influence the structural changes, specifically in the Switch-II region, which are expected to impact the GTP hydrolysis and thus are termed oncogenic mutations.


Asunto(s)
Nucleótidos , Proteínas , Guanosina Trifosfato/química , Unión Proteica/genética , Proteínas/metabolismo , Hidrólisis , Nucleótidos/metabolismo , Adenosina Trifosfato/metabolismo
9.
Proteins ; 92(6): 768-775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38235908

RESUMEN

The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases. Here, we report the crystal structure of DPCK and its complex with GTP and a magnesium ion from the archaeal hyperthermophile Thermococcus kodakarensis. The crystal structure demonstrates why GTP is the preferred substrate of this kinase. We also report the activity analyses of site-directed mutants of crucial residues determined based on sequence conservation and the crystal structure. From these results, the key residues involved in the reaction of phosphoryl transfer and the possible dephospho-CoA binding site are inferred.


Asunto(s)
Secuencia de Aminoácidos , Proteínas Arqueales , Guanosina Trifosfato , Magnesio , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol) , Thermococcus , Thermococcus/enzimología , Thermococcus/genética , Thermococcus/química , Cristalografía por Rayos X , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Magnesio/metabolismo , Magnesio/química , Mutagénesis Sitio-Dirigida , Dominio Catalítico , Sitios de Unión , Especificidad por Sustrato , Coenzima A/metabolismo , Coenzima A/química , Unión Proteica
10.
J Biomol Struct Dyn ; 42(5): 2653-2666, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37158088

RESUMEN

Earlier molecular dynamics studies of the FtsZ protein revealed that the protein has high intrinsic flexibility which the crystal structures cannot reveal. However, the input structure in these simulation studies was based on the available crystal structure data and therefore, the effect of the C-terminal Intrinsically Disordered Region (IDR) of FtsZ could not be observed in any of these studies. Recent investigations have revealed that the C-terminal IDR is crucial for FtsZ assembly in vitro and Z ring formation in vivo. Therefore, in this study, we simulated FtsZ with the IDR. Simulations of the FtsZ monomer in different nucleotide bound forms (without nucleotide, GTP, GDP) were performed. In the conformations of FtsZ monomer with GTP, GTP binds variably with the protein. Such a variable interaction with the monomer has not been observed in any previous simulation studies of FtsZ and not observed in crystal structures. We found that central helix bends towards the C-terminal domain in the GTP bound form, hence, making way for polymerization. A nucleotide dependent shift/rotation of the C-terminal domain was observed in simulation time averaged structures.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteínas Bacterianas , Simulación de Dinámica Molecular , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/química , Nucleótidos , Escherichia coli/metabolismo , Guanosina Trifosfato/química
11.
Sci Rep ; 13(1): 19253, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935773

RESUMEN

KRAS mutations are major drivers of various cancers. Recently, allele-specific inhibitors of the KRAS G12C mutant were developed that covalently modify the thiol of Cys12, thereby trapping KRAS in an inactive GDP-bound state. To study the mechanism of action of the covalent inhibitors in both in vitro and intracellular environments, we used real-time NMR to simultaneously observe GTP hydrolysis and inhibitor binding. In vitro NMR experiments showed that the rate constant of ARS-853 modification is identical to that of GTP hydrolysis, indicating that GTP hydrolysis is the rate-limiting step for ARS-853 modification. In-cell NMR analysis revealed that the ARS-853 reaction proceeds significantly faster than that in vitro, reflecting acceleration of GTP hydrolysis by endogenous GTPase proteins. This study demonstrated that the KRAS covalent inhibitor is as effective in the cell as in vitro and that in-cell NMR is a valuable validation tool for assessing the pharmacological properties of the drug in the intracellular context.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias/genética , Mutación , Espectroscopía de Resonancia Magnética , Guanosina Trifosfato/química
12.
Anal Bioanal Chem ; 415(27): 6689-6700, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37714971

RESUMEN

Guanosine triphosphate (GTP) and adenosine triphosphate (ATP) are essential nucleic acid building blocks and serve as energy molecules for a wide range of cellular reactions. Cellular GTP concentration fluctuates independently of ATP and is significantly elevated in numerous cancers, contributing to malignancy. Quantitative measurement of ATP and GTP has become increasingly important to elucidate how concentration changes regulate cell function. Liquid chromatography-coupled mass spectrometry (LC-MS) and capillary electrophoresis-coupled MS (CE-MS) are powerful methods widely used for the identification and quantification of biological metabolites. However, these methods have limitations related to specialized instrumentation and expertise, low throughput, and high costs. Here, we introduce a novel quantitative method for GTP concentration monitoring (GTP-quenching resonance energy transfer (QRET)) in homogenous cellular extracts. CE-MS analysis along with pharmacological control of cellular GTP levels shows that GTP-QRET possesses high dynamic range and accuracy. Furthermore, we combined GTP-QRET with luciferase-based ATP detection, leading to a new technology, termed QT-LucGTP&ATP, enabling high-throughput compatible dual monitoring of cellular GTP and ATP in a homogenous fashion. Collectively, GTP-QRET and QT-LucGTP&ATP offer a unique, high-throughput opportunity to explore cellular energy metabolism, serving as a powerful platform for the development of novel therapeutics and extending its usability across a range of disciplines.


Asunto(s)
Adenosina Trifosfato , Adenosina , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Adenosina Trifosfato/metabolismo , Guanosina , Cromatografía Liquida
13.
ACS Chem Biol ; 18(10): 2200-2210, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37233733

RESUMEN

Sterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance. The enzyme also possesses a single-strand nucleic acid binding function that promotes RNA and DNA homeostasis by several mechanisms. To discover small molecule inhibitors of SAMHD1, we screened a custom ∼69 000-compound library for dNTPase inhibitors. Surprisingly, this effort yielded no viable hits and indicated that exceptional barriers for discovery of small molecule inhibitors existed. We then took a rational fragment-based inhibitor design approach using a deoxyguanosine (dG) A1 site targeting fragment. A targeted chemical library was synthesized by coupling a 5'-phosphoryl propylamine dG fragment (dGpC3NH2) to 376 carboxylic acids (RCOOH). Direct screening of the products (dGpC3NHCO-R) yielded nine initial hits, one of which (R = 3-(3'-bromo-[1,1'-biphenyl]), 5a) was investigated extensively. Amide 5a is a competitive inhibitor against GTP binding to the A1 site and induces inactive dimers that are deficient in tetramerization. Surprisingly, 5a also prevented ssDNA and ssRNA binding, demonstrating that the dNTPase and nucleic acid binding functions of SAMHD1 can be disrupted by a single small molecule. A structure of the SAMHD1-5a complex indicates that the biphenyl fragment impedes a conformational change in the C-terminal lobe that is required for tetramerization.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Ácidos Nucleicos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Ácido Aspártico , Histidina , Motivo alfa Estéril , Guanosina Trifosfato/química , Desoxiguanosina , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo
14.
J Infect Public Health ; 16(7): 996-1003, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37167647

RESUMEN

BACKGROUND: Last year, the human monkeypox virus (hMPXV) emerged as an alarming threat to the community, with a detectable outbreak outside the African continent for the first time. According to The American Centers for Disease Control and Prevention (CDC), the virus is reported globally, with 86,746 confirmed cases (until April 08, 2023). DNA-dependent RNA polymerase (DdRp) is an essential protein for viral replication; hence it is a promising drug target for developing antiviral drugs against DNA viruses. Therefore, this study was conducted to search for natural compounds that could provide scaffolds for RNA polymerase inhibitors. METHODS: In this study, the DdRp structure of hMPXV was modeled and used to screen the natural compounds database (COCONUT). The virtual screening revealed 15 compounds able to tightly bind to the active site of the DdRp (binding energies less than -7.0 kcal/mol) compared to the physiological nucleotide, guanosine triphosphate (GTP). Molecular dynamics simulation was then performed on the top four hits and compared to GTP RESULTS: The results revealed the potential of four compounds (comp289, comp295, comp441, and comp449) in binding the hMPXV DdRp active site with a comparable binding affinity (-17.06 ± 2.96, -11.6 ± 5.34, -14.85 ± 2.66, and -10.79 ± 4.49 kcal/mol) with GTP (-21.03 ± 7.55 kcal/mol) CONCLUSION: These findings may also pave the way for developing new hMPXV inhibitors based on natural product scaffolds. These results need further experimental validation but promising as it was validated by unbiased all-atom MD simulations and binding free energy calculations.


Asunto(s)
Simulación de Dinámica Molecular , Monkeypox virus , Humanos , Simulación del Acoplamiento Molecular , ARN Polimerasas Dirigidas por ADN , Guanosina Trifosfato/química , Antivirales/farmacología , Antivirales/química
15.
J Enzyme Inhib Med Chem ; 38(1): 2195995, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37057639

RESUMEN

Mutations highly affect the structural flexibility of two switch domains in M-RAS considered an important target of anticancer drug design. Gaussian accelerated molecular dynamics (GaMD) simulations were applied to probe the effect of mutations P40D, D41E, and P40D/D41E/L51R on the conformational transition of the switch domains from the GTP-bound M-RAS. The analyses of free energy landscapes (FELs) not only reveal that three mutations induce less energetic states than the wild-type (WT) M-RAS but also verify that the switch domains are extremely disordered. Principal component analysis (PCA) and dynamics analysis suggest that three mutations greatly affect collective motions and structural flexibility of the switch domains that mostly overlap with binding regions of M-RAS to its effectors, which in turn disturbs the activity of M-RAS. The analyses of the interaction network between GTP and M-RAS show that the high instability in hydrogen bonding interactions (HBIs) of GTP with residue 41 and Y42 in the switch domain I drives the disordered states of the switch domains. This work is expected to provide a molecular mechanism for deeply understanding the function of M-RAS and future drug design towards the treatment of cancers.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas ras , Proteínas ras/genética , Proteínas ras/química , Proteínas ras/metabolismo , Conformación Proteica , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Mutación
16.
Biochemistry ; 62(9): 1509-1526, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37042791

RESUMEN

Interferon-gamma-inducible human large GTPases, hGBP1 and hGBP2, have a distinctive feature of hydrolyzing GTP to GDP and GMP through successive phosphate cleavages. In hGBP1, GMP is the major product, which is essential for its anti-pathogenic activities. However, its close homologue hGBP2 produces significantly less GMP, despite having a similar active site architecture. The molecular basis for less GMP formation and catalytic residue(s) in hGBP2 are not fully explored. To address these issues, we performed systematic biochemical, biophysical, and microsecond simulation studies. Our data suggest that the less GMP formation in hGBP2 is due to the lack of H-bond formation between the W79 side-chain (located near the active site) and main-chain carbonyl of K76 (present in the catalytic loop) in the substrate-bound hGBP2. The absence of this H-bond could not redirect the catalytic loop toward the beta phosphate after the cleavage of gamma-phosphate, a step essential for enhanced GMP formation. Furthermore, based on the mutational and structural analyses, this study for the first time indicates that the same residue, T75, mediates both phosphate cleavages in hGBP2 and hGBP1. This suggests the conservation of the catalytic residue in hGBP homologues. These findings emphasize the indispensable role of correct catalytic loop repositioning for efficient beta phosphate cleavage. This led us to propose a new substrate hydrolysis mechanism by hGBP1 and hGBP2, which may also be helpful to understand the GTP hydrolysis in other hGBP homologues. Overall, the study could provide insight into how these two close homologues play crucial roles in host-mediated immunity through different mechanisms.


Asunto(s)
GTP Fosfohidrolasas , Proteínas de Unión al GTP , Humanos , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/química , GTP Fosfohidrolasas/metabolismo , Hidrólisis , Fosfatos
17.
J Chem Phys ; 158(9): 091104, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889947

RESUMEN

Classifying reliably active and inactive molecular conformations of wildtype (WT) and mutated oncogenic proteins is a key, ongoing challenge in molecular cancer studies. Here, we probe the GTP-bound K-Ras4B conformational dynamics using long-time atomistic molecular dynamics (MD) simulations. We extract and analyze the detailed underlying free energy landscape of WT K-Ras4B. We use two key reaction coordinates, labeled d1 and d2 (i.e., distances coordinating the Pß atom of the GTP ligand with two key residues, T35 and G60), shown to correlate closely with activities of WT and mutated K-Ras4B. However, our new K-Ras4B conformational kinetics study reveals a more complex network of equilibrium Markovian states. We show that a new reaction coordinate is required to account for the orientation of acidic K-Ras4B sidechains such as D38 with respect to the interface with binding effector RAF1 and rationalize the activation/inactivation propensities and the corresponding molecular binding mechanisms. We use this understanding to unveil how a relatively conservative mutation (i.e., D33E, in the switch I region) can lead to significantly different activation propensities compared with WT K-Ras4B. Our study sheds new light on the ability of residues near the K-Ras4B-RAF1 interface to modulate the network of salt bridges at the binding interface with the RAF1 downstream effector and, thus, to influence the underlying GTP-dependent activation/inactivation mechanism. Altogether, our hybrid MD-docking modeling approach enables the development of new in silico methods for quantitative assessment of activation propensity changes (e.g., due to mutations or local binding environment). It also unveils the underlying molecular mechanisms and facilitates the rational design of new cancer drugs.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Molecular , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo
18.
Comput Biol Chem ; 104: 107835, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36893567

RESUMEN

Functional interaction of Ras signaling proteins with upstream, negative regulatory GTPase activating proteins (GAPs) represents a crucial step in cellular decision making related to growth and survival. Key components of the catalytic transition state for Ras deactivation by GAP-accelerated hydrolysis of Ras-bound guanosine triphosphate (GTP) are thought to include an arginine residue from the GAP (the arginine finger), a glutamine residue from Ras (Q61), and a water molecule that is likely coordinated by Q61 to engage in nucleophilic attack on GTP. Here, we use in-vitro fluorescence experiments to show that 0.1-100 mM concentrations of free arginine, imidazole, and other small nitrogenous molecule fail to accelerate GTP hydrolysis, even in the presence of the catalytic domain of a mutant GAP lacking its arginine finger (R1276A NF1). This result is surprising given that imidazole can chemically rescue enzyme activity in arginine-to-alanine mutant protein tyrosine kinases (PTKs) that share many active site components with Ras/GAP complexes. Complementary all-atom molecular dynamics (MD) simulations reveal that an arginine finger GAP mutant still functions to enhance Ras Q61-GTP interaction, though less extensively than wild-type GAP. This increased Q61-GTP proximity may promote more frequent fluctuations into configurations that enable GTP hydrolysis as a component of the mechanism by which GAPs accelerate Ras deactivation in the face of arginine finger mutations. The failure of small molecule analogs of arginine to chemically rescue catalytic deactivation of Ras is consistent with the idea that the influence of the GAP goes beyond the simple provision of its arginine finger. However, the failure of chemical rescue in the presence of R1276A NF1 suggests that the GAPs arginine finger is either unsusceptible to rescue due to exquisite positioning or that it is involved in complex multivalent interactions. Therefore, in the context of oncogenic Ras proteins with mutations at codons 12 or 13 that inhibit arginine finger penetration toward GTP, drug-based chemical rescue of GTP hydrolysis may have bifunctional chemical/geometric requirements that are more difficult to satisfy than those that result from arginine-to-alanine mutations in other enzymes for which chemical rescue has been demonstrated.


Asunto(s)
Proteínas Activadoras de GTPasa , Simulación de Dinámica Molecular , Hidrólisis , Guanosina Trifosfato/química , Catálisis , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Arginina/química
19.
SAR QSAR Environ Res ; 34(1): 65-89, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36762439

RESUMEN

Probing binding modes of GDP, GTP and GNP to NRAS are of significance for understanding the regulation mechanism on the activity of RAS proteins. Four separate Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the apo, GDP-, GTP- and GNP-bound NRAS. Dynamics analyses suggest that binding of three ligands highly affects conformational states of the switch domains from NRAS, which disturbs binding of NRAS to its effectors. The analyses of free energy landscapes (FELs) indicate that binding of GDP, GTP and GNP induces more energetic states of NRAS compared to the apo NRAS but the presence of GNP makes the switch domains more ordered than binding of GDP and GNP. The information of interaction networks of ligands with NRAS reveals that the π-π interaction of residue F28 and the salt bridge interactions of K16 and D119 with ligands stabilize binding of GDP, GTP and GNP to NRAS. Meanwhile magnesium ion plays a bridge role in interactions of ligands with NRAS, which is favourable for associations of GDP, GTP and GNP with NRAS. This work is expected to provide useful information for deeply understanding the function and activity of NRAS.


Asunto(s)
Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Conformación Molecular , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Conformación Proteica
20.
Sci Signal ; 16(772): eabq7842, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36787384

RESUMEN

Heterotrimeric guanine nucleotide-binding proteins (G proteins) that function as molecular switches for cellular growth and metabolism are activated by GTP and inactivated by GTP hydrolysis. In uveal melanoma, a conserved glutamine residue critical for GTP hydrolysis in the G protein α subunit is often mutated in Gαq or Gα11 to either leucine or proline. In contrast, other glutamine mutations or mutations in other Gα subtypes are rare. To uncover the mechanism of the genetic selection and the functional role of this glutamine residue, we analyzed all possible substitutions of this residue in multiple Gα isoforms. Through cell-based measurements of activity, we showed that some mutants were further activated and inactivated by G protein-coupled receptors. Through biochemical, molecular dynamics, and nuclear magnetic resonance-based structural studies, we showed that the Gα mutants were functionally distinct and conformationally diverse, despite their shared inability to hydrolyze GTP. Thus, the catalytic glutamine residue contributes to functions beyond GTP hydrolysis, and these functions include subtype-specific, allosteric modulation of receptor-mediated subunit dissociation. We conclude that G proteins do not function as simple on-off switches. Rather, signaling emerges from an ensemble of active states, a subset of which are favored in disease and may be uniquely responsive to receptor-directed ligands.


Asunto(s)
Glutamina , Proteínas de Unión al GTP Heterotriméricas , Dominio Catalítico , Glutamina/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Mutación , Guanosina Trifosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...